
www.manaraa.com

Research Article
Research on Speed Optimization Strategy of Hybrid Electric
Vehicle Queue Based on Particle Swarm Optimization

ShaohuaWang ,1 Chengquan Yu,1 Dehua Shi,1,2 and Xiaoqiang Sun1,2

1School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
2Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China

Correspondence should be addressed to ShaohuaWang; shwang@ujs.edu.cn

Received 14 May 2018; Accepted 10 October 2018; Published 22 October 2018

Academic Editor: Jürgen Pannek

Copyright © 2018 ShaohuaWang et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Traffic lights intersections are common in cities and have an impact on the energy consumption of vehicles, so it is significant
to optimize the velocities of vehicles in urban road conditions. The novel speed optimization strategy for hybrid electric vehicle
(HEV) queue that helps reduce fuel consumption and improve traffic efficiency is presented in this paper, where real-world traffic
signal information is used to construct the research scenario. The initial values of the target velocities are obtained based on the
signal phase and timing (SPAT). Then the particle swarm optimization (PSO) algorithm is used to solve the nonlinear constrained
problem and obtain the optimal target velocities based on vehicle to vehicle communication (V2V) and vehicle to infrastructure
communication (V2I). The lower controller, which applies rule based control strategy, is designed to split the power of the engine
and two electricmotors in a power split HEV, which is quite promising because of its advantages in fuel economy. Simulation results
demonstrate the superior performance of the proposed strategy in reducing fuel consumption of the HEV queue and improving
traffic smoothness.

1. Introduction

With rapid growth of car ownership, the problem of excessive
energy consumption and environmental pollution is becom-
ing more and more serious, and transportation accounts for
a large part of energy consumption and greenhouse gas emis-
sions in the world [1]. Energy issues and environmental issues
have become the major themes of the automotive industry in
the 21st century [2]. Many researchers have investigated the
problems from different angles, such as human factors and
improvement of vehicle or engine design [3]. As for human
factors, the main consideration is the control of the driving
behavior, that is, speed optimization of vehicles.

Furthermore, the intelligent transportation system (ITS)
and connected vehicle (CV) technology have developed
rapidly in recent years. In 2015, the first connected vehicle in
Europe has hit the road. It is predicted that the popularity of
the CV technology in new vehicles will reach 70% in 2027 [4].
So measurements become available and speed optimization
based on traffic informationhas become easier to be achieved.
In the ITS, through communicating with other vehicles and

traffic infrastructure, any vehicle can obtain traffic informa-
tion and information about vehicles around, including traffic
signal ahead, speed limits, vehicle speeds, positions, rates
of acceleration, and deceleration, so as to plan a reasonable
speed to avoid red light idling and collisions (i.e., vehicle
speed is optimized directly by using traffic information).

Many studies have confirmed that vehicle speed has a
great influence on fuel consumption and fuel economy can
be improved by speed optimization [5–8]. Giovanni et al.
computed optimal velocity profiles for a vehicle in an urban
traffic network [5]. He et al. presented a multistage optimal
control approach considering vehicle queue passing through
multiple intersections [6]. In [7], the authors planned vehicle
speed to reduce fuel consumption and emissions by using
V2V communication and V2I communication. However,
these papers are aimed at traditional fuel vehicles.

Hybrid electric vehicles (HEVs) have been under the
spotlight because of their low fuel consumption and low-
emission characteristics. HEVs demonstrate superior advan-
tages under urban driving conditions, including stop-and-
go patterns and frequent acceleration/deceleration. They
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have gradually entered the industrialization stage in the last
decade. Therefore some researches have been done about
speed optimization of HEV in the ITS in recent years.
The researchers at Clemson University and University of
Minnesota carried out a series of studies on HEVs with
the ITS [9–12]. In [11], the authors further minimized the
energy consumption of plug-in HEVs (PHEVs) through V2I
communication. The optimization strategies reduced energy
consumption by 60-76%. A speed optimization method
based on genetic algorithm for a HEV that passes through
multiple intersections is proposed by Yugong Luo et al.
[13]. Traffic signal information is taken into the power-split
control strategy of vehicle.The average fuel consumption and
the average passing time of the HEV applying the optimal
speed advisory strategy are decreased. In [14], researchers
present an optimal controller for a HEV to maximize fuel
efficiency by using CV technology, unlike the general power-
split control strategy for HEVs, which only focus on the
optimization of the torque distribution between the engine
and the electric motor.The controller optimizes vehicle speed
and power-split together. Besides, some authors have taken
into account the road slope information, which optimized
not only velocity, but also the battery state of charge (SOC)
[15, 16].

However, most of the studies in fuel economic control
of the HEV consider single vehicle scenario and do not
consider vehicle queue. Although some consider the HEV
queue, traffic light information is not taken into account [16].
There are few studies on the speed optimization of the HEV
queue in the ITS, taking into account traffic light information.
In this study, we propose a speed optimization strategy of
HEV queue considering traffic light information to improve
the performance of the group of connected HEVs in urban
road conditions.

Aiming tominimize vehicle average energy consumption
and red light idling, we use PSO algorithm to optimize the
velocities of the HEVs combining the actual traffic signal
lights and speed limits on a section of practical urban road.
The optimal target velocity of each vehicle that we obtain
is a comprehensive balance among mobility, fuel economy,
safety, and comfort. The balance among them is realized
via weighting factors. In addition, the lower controller is
designed. It is the energy management control level, which
tracks the optimal target velocity, and controls the power split
between the engine and the electric motors by using rule
based control strategy.

The rest of this paper is organized as follows. Section 2
describes the collection results of traffic information and the
setting of operation environment of theHEVqueue. Section 3
provides the description of the control structure. In Section 4,
the optimization problem solution and the design of lower
controller are presented. Section 5 is simulation and analysis
of simulation results. Finally, Section 6 summarizes the main
conclusions.

2. Operation Environment of the HEV Queue

In the study, the HEV queue passing through a series of
intersections is studied. The scenario of the research is

constructed with information of a practical urban road, as
shown in Figure 1. The main features are as follows:

(1) The queue consists of six HEVs, which have the same
type.

(2) There is no lane changing and overtaking.
(3) The vehicles run in a single direction in vehicle

networking environment and pass through multiple
intersections.

(4) The effects of nonmotorized lanes and pedestrians are
not considered.

(5) Each vehicle is equipped with a communication
device that receives signals from the vehicles ahead
and behind, traffic lights, and other signal transmit-
ting devices within a certain distance.

In addition, we suppose that the direction of the vehicles
is the positive and the coordinate origin is in the opposite
direction of the vehicles. The initial locations of the first to
sixth vehicles are assumed to be 80m, 70m, 50m, 42m, 30m,
and 16m, while the initial velocities of them are 10m/s.

In this study, traffic lights and other information are col-
lected, according to which the operation environment of the
HEV queue is set up.The total distance is 5161m.The selected
road with a speed limit of 70km/h and collected information
are shown in Figure 2 and Table 1, respectively. There are
eleven traffic lights on this section of the road. Because yellow
light acts like red light, yellow light duration is counted in
red light duration. According to the instant at which the
first red light starts at each intersection, which is shown in
Table 1, the time interval between each traffic light can be
known.

3. Control Structure

In this section, the structure of the speed optimization
controller and the lower controller is presented in Figure 3.
The control structure is based on the assumption that the
vehicles are equipped with V2V and V2I communication
device. It is assumed that there are no communication issues
such as delay and data packet loss. The speed optimiza-
tion controller integrates the PSO algorithm to obtain the
optimal target velocity of each vehicle based on the traffic
information, including traffic signal, speed limits, and the
preceding vehicle’s information. The velocity of each vehicle
is optimized to achieve the control objectives, including
minimizing fuel consumption, ensuring safety, maximiz-
ing mobility, and comfort, under the constraints of traffic
rules.

The lower controller integrates energy management algo-
rithm. After it receives the control signal, the optimal torques
of the engine and the electric motors at the moment are
obtained by the control algorithm. Then the optimal control
instructions are sent to the engine controller and the motor
controllers. Each controller controls the corresponding com-
ponent according to the received control instructions and
the actual output of the components is fed back to the lower
controller for closed-loop correction.
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Table 1: The collected traffic information.

Intersection
no.

Red light
phase(s)

Green light
phase(s)

The instant at
which the first
red light starts

(s)

Distance from
the starting
point(m)

1 51 54 0 589
2 29 103 41 910
3 98 38 15 1669
4 44 92 55 2406
5 48 88 120 2739
6 58 78 59 3104
7 44 105 96 3628
8 82 68 34 3829
9 89 60 50 4046
10 69 81 81 4280
11 91 45 63 5161

4. Speed Optimization and
Lower Level Control

4.1. Speed Optimization. The process of solving the optimal
velocity of each vehicle is divided into two parts. First of all,
the initial target velocity is obtained, that is, the maximum
allowable speed that vehicle can pass through the intersection
in the green light window. Then the PSO algorithm is used
to solve the minimum value of the objective function and
obtain the optimal target velocity, where fuel economy, safety,
comfort, and traffic efficiency are taken into account.

4.1.1. Vehicle Dynamics and Fuel Consumption. In vehicle
queue, the longitudinal dynamics model of any vehicle m is
as follows [17]:

⋅𝑥𝑚 = 𝑓𝑚 (𝑥𝑚, 𝑢𝑚) ,

𝑓𝑚 (𝑥𝑚, 𝑢𝑚) = [[
[

V𝑚

− 1
2𝑀𝑚𝐶𝐷𝜌𝑎𝐴𝑚V

2
𝑚 − 𝜇𝑔 − 𝑔𝜃 + 𝑢𝑚

]]
]

, (1)

where x𝑚=[s𝑚,v𝑚] is state variable and s𝑚 and v𝑚 are location
and velocity of any vehicle m. u𝑚 is the control variable for
the vehicle m. In this study, u𝑚 refers to traction or braking
force per unitmass.M𝑚,C𝐷,𝜌𝑎,A𝑚,𝜇, g, and 𝜃 are themass of
the vehiclem, the air resistance coefficient, the air density, the
frontal area of the vehiclem, the rolling resistance coefficient,
acceleration of gravity, and the road gradient, respectively.
We assume that 𝜃 is very small so cos(𝜃)=1 and sin(𝜃)=𝜃
approximately.

Because fuel economy is considered when solving the
optimal target velocity, a model for evaluating fuel economy
should be established. The problem of solving minimum
value of the energy consumption per unit distance of n vehi-
cles over a period of time is given by the following equation:

min
𝑢
𝑚
(𝑡)

𝑛∑
𝑚=1

1
𝑆𝑚 (𝑇)

𝑇∑
𝑡=0

𝑚𝑚𝑓𝑢𝑒𝑙 (𝑡) Δ𝑡 (2)

subject to 𝑚𝑚𝑓𝑢𝑒𝑙 (𝑡) = 1𝜂𝑚𝑒𝑓𝑓𝐻𝑃𝑚𝑤 (𝑡)
𝑃𝑚𝑤 (𝑡)
= 1

2𝜌𝑎𝐶𝐷𝐴𝑚V𝑚 (𝑡)3 + 𝜇𝑀𝑚𝑔V𝑚 (𝑡)
+ 𝑀𝑚𝑔𝜃V𝑚 (𝑡) + 𝑀𝑚V𝑚 (𝑡) 𝑑V𝑚 (𝑡)𝑑𝑡

Vmin ≤ V𝑚 (𝑡) ≤ Vmax

𝑢𝑚min ≤ 𝑢𝑚 (𝑡) ≤ 𝑢𝑚max.

(3)

In the above equation, T is vehicle travel time. S𝑚(T) is the
distance that the mth vehicle travels within a period of time
T.m𝑚𝑓𝑢𝑒𝑙(t) is the rate of fuel consumption of HEVs. 𝜂𝑚𝑒𝑓𝑓 is
efficiency of the path from the fuel tank to the vehicle power-
train.H is the fuel lower heating value. P𝑚𝑤(t) is the required
power. Vmax and Vmin are the maximum and minimum allow-
able speed on the given road, respectively. 𝑢𝑚min and 𝑢𝑚max
are the minimum and maximum allowable control variable.

4.1.2. Initial Target Velocity. Vehicles can exchange informa-
tion with traffic infrastructure based on V2I. A velocity range
can be obtained to avoid red light idling by using traffic light
information and the distance between the vehicle and the
intersection ahead.

Figure 4 shows a schematic of traffic lights distributed
over space-time. Suppose gij is starting time of the jth green
light window of the ith traffic light and rij is starting time of
the jth red light window of the ith traffic light. d𝑚(k) is the
distance between s𝑚(k) (location of themth vehicle at instant
k) and the traffic light ahead.

For example, at the initial moment, for a vehicle to pass
through the first traffic light during the first green light
window, its velocity should be in the interval [d𝑚(0)/r11,
d𝑚(0)/g11] [18]. And it is only feasible if this interval has a set
intersection with the allowable speed interval [Vmin,Vmax]. If
there is no set intersection, the vehicle can not pass through
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Figure 4: Schematic of traffic lights distributed over space-time.

the intersection during the first green light window. In that
case, feasibility of passing during the next green should slow
down.The process is repeated and until a green light window
is available, that is, the set intersection is not empty. This set
intersection is characterized as

[𝑑𝑚 (0)𝑟1𝑗 , 𝑑𝑚 (0)𝑔1𝑗 ] ∩ [Vmin, Vmax] . (4)

Of course, if the set intersection is always empty, the vehicle
has to stop at the intersection.

Generally speaking, if the traffic signal ahead is red at
instant k, the set intersection can be characterized as

[𝑑𝑚 (𝑘)𝑟𝑖𝑗 − 𝑘 ,
𝑑𝑚 (𝑘)𝑔𝑖𝑗 − 𝑘] ∩ [Vmin, Vmax] . (5)

If the traffic signal ahead is green and Vmax ≥d𝑚(k)/rij, the set
intersection can be characterized as

[𝑑𝑚 (𝑘)𝑟𝑖𝑗 − 𝑘 , Vmax] ∩ [Vmin, Vmax] . (6)

Otherwise, the set intersection can be characterized as

[𝑑𝑚 (𝑘)𝑟𝑖𝑗 − 𝑘 ,
𝑑𝑚 (𝑘)𝑔𝑖𝑗 − 𝑘] ∩ [Vmin, Vmax] . (7)

The set intersection is the velocity range that ensures
the vehicle would be able to avoid stopping at red light
when passing through each intersection. The velocity range

is characterized as [V𝑚low, V𝑚high]. So we set V𝑚target (k) (the initial
target velocity at instant k) = V𝑚high.

Besides, according to the velocity range, we can compute
corresponding limits on control variable [19]:

V𝑚 (𝑡) ≤ V𝑚target (𝑡) , (8)

V𝑚 (𝑡 − 1) + 𝑎Δ𝑡 ≤ V𝑚target (𝑡) , (9)

where 𝑎 = 𝑢𝑚 (𝑡) − 1
2𝑀𝑚𝐶𝐷𝜌𝑎𝐴𝑚V

2
𝑚 − 𝜇𝑔 − 𝑔𝜃

≤ V𝑚target (𝑡) − V𝑚 (𝑡 − 1)
Δ𝑡 ,

(10)

similarly, 𝑢𝑚 (𝑡) − 1
2𝑀𝑚𝐶𝐷𝜌𝑎𝐴𝑚V

2
𝑚 − 𝜇𝑔 − 𝑔𝜃

≥ V𝑚low (𝑡) − V𝑚 (𝑡 − 1)
Δ𝑡 .

(11)

Thus from the above relations, we can evaluate the limits to
control variable as

V𝑚low (𝑡) − V𝑚 (𝑡 − 1)
Δ𝑡 + 1

2𝑀𝑚𝐶𝐷𝜌𝑎𝐴𝑚V
2
𝑚 + 𝜇𝑔 + 𝑔𝜃

≤ 𝑢𝑚 (𝑡)
≤ V𝑚target (𝑡) − V𝑚 (𝑡 − 1)

Δ𝑡 + 12𝑀𝑚𝐶𝐷𝜌𝑎𝐴𝑚V
2
𝑚 + 𝜇𝑔

+ 𝑔𝜃,

(12)

such that 𝑢𝑚min ≤ 𝑢𝑚 (𝑡) ≤ 𝑢𝑚max. (13)

That is to say, if the control input is in the range shown
in (12), the velocity of the vehicle would be in the range[V𝑚low, V𝑚high] and the vehicle would not meet red light when
through the intersection.

4.1.3. Optimal Target Velocity. The solution of the optimal
target velocity of each vehicle is a multiobjective optimiza-
tion problem. In this study, mobility, fuel economy, safety,
and comfort are taken into account. Correspondingly, we
consider the vehicle velocity tracking, fuel consumption, the
relative distance between vehicles, and the control variable.
So the objective function is chosen as the sum of the weighted
values of them.The objective function for solving the optimal
target velocity of vehicle m at instant k is [20]

𝐽𝑚 (𝑘) = min
𝑢
𝑚
(𝑡)

𝑘+𝑇−1∑
𝑡=𝑘

[𝜔1 (V𝑚 (𝑡) − V𝑚target (𝑘))2 + 𝜔2 𝑚𝑚𝑓𝑢𝑒𝑙 (𝑡) Δ𝑡
𝑠𝑚 (𝑘 + 𝑇 − 1) − 𝑠𝑚 (𝑘) + 𝜔3 (𝑡) 𝑅𝑚𝑛 (𝑡)2 + 𝜔4𝑢𝑚 (𝑡)2] (14)

subject to 𝑅𝑚𝑛 (𝑡) = 𝑆0 + 𝑡ℎV𝑚 (𝑡) − (𝑠𝑛 (𝑡) − 𝑠𝑚 (𝑡))
𝜔3 (𝑡) = 𝛼𝑒−𝛽(𝑠𝑛(𝑡)−𝑠𝑚(𝑡))
V𝑚low (𝑡) ≤ V𝑚 (𝑡) ≤ V𝑚target (𝑡) .

(15)
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The range of control input u𝑚(t) should be in accordance
with (12). S0 and tℎ are safe distance at rest and headway time,
respectively. The value of 𝜔3 in (15) shows that 𝜔3 increases as
the relative distance between the vehicles decreases. 𝜔1, 𝜔2,
and 𝜔4 are constant weights.

In (14), the first term tries to make the velocity of m as
close as possible to the initial target velocity while the second
termminimizes fuel consumption. The third termminimizes
the deviation between the distance between vehicle m and
its preceding vehicle n and the safe distance. Safety and the
compactness of vehicle queue are considered in this term,
relying on V2V. The last term minimizes the control input to
avoid sudden acceleration or braking and ensure comfort.

Considering solving efficiency, the PSO algorithm is used
to solve the optimal control problem as (14). PSO algorithm
starts with a random solution and finds the optimal solution
by iteration. Like genetic algorithm, it also uses fitness degree
to evaluate the quality of solutions, but it is simpler than
genetic algorithm because it has no crossover and mutation
[21]. So PSO algorithm is easy to achieve with high precision
and fast convergence.

The PSO algorithm design is shown in Figure 5. In an n-
dimensional search space, the position and speed of the ith
particle are

𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑛) ,
𝑉𝑖 = (V𝑖1, V𝑖2, . . . , V𝑖𝑛) . (16)

The current individual optimum value and the global opti-
mum value are 𝑝best and 𝑔best, respectively. In the each
iteration, the position and speed of each particle are updated
to track the twooptimumvalues based on equation as follows:

V𝑘+1𝑖𝑗 = 𝜔V𝑘𝑖𝑗 + 𝑐1 ⋅ 𝑟𝑎𝑛𝑑1 ⋅ (𝑝best − 𝑥𝑘𝑖𝑗)
+ 𝑐2 ⋅ 𝑟𝑎𝑛𝑑2 ⋅ (𝑔best − 𝑥𝑘𝑖𝑗)

𝑥𝑘+1𝑖𝑗 = 𝑥𝑘𝑖𝑗 + V𝑘+1𝑖𝑗

(17)

subject to V𝑘+1𝑖𝑗 = {{{
V𝑝max, V𝑘+1𝑖𝑗 > V𝑝max

−V𝑝max, V𝑘+1𝑖𝑗 < −V𝑝max

𝑥𝑘+1𝑖𝑗 = {{{
𝑥max, 𝑥𝑘+1𝑖𝑗 > 𝑥max

𝑥min, 𝑥𝑘+1𝑖𝑗 < 𝑥min,
(18)

where V𝑘+1𝑖𝑗 and 𝑥𝑘+1𝑖𝑗 are the speed and position of the jth
dimensional component of the ith particle at the iteration
number k+1; V𝑝max is maximum particle velocity; 𝑥max and𝑥min are the maximum position and minimum position of
the particle; rand1 and rand2 are random numbers within the
range of [0, 1]; c1 and c2 are the learning factors; and 𝜔 is the
inertia factor.

A large inertia factor is good for jumping out of local
optimum, which is convenient for global search, while a small
inertia factor is beneficial to accurate search in the current
search region and the convergence of the algorithm, so the
weight of linear variation can be used. For the facts that the
PSO algorithm has the problem of premature convergence
and oscillation is easy to occur near the global optimum
solution at the later stage of the PSO algorithm, the inertia
weight is reduced linearly from the maximum 𝜔max to the
minimum 𝜔min. The formula that indicates 𝜔 varies with the
iteration number is

𝜔 = 𝜔max − 𝑘 ⋅ (𝜔max − 𝜔min)𝑘max
, (19)

where k is the current iteration number and 𝑘max is the
maximum number of iterations.

Considering the dynamic characteristics of the system,
rolling optimization is used [22].The first control input of the
control sequence which is obtained is applied to the system.
And the corresponding first velocity is the optimal target
velocity at instant k. Then the interval is pushed forward
one step and PSO algorithm is repeated. The optimal target
velocity sequence is obtained by rolling optimization. The
principle of rolling optimization is shown in Figure 6.

4.2. Lower Level Control. The lower controller maps the
velocity profile of each vehicle obtained from the speed
optimization controller to power request and calculates the
torque distribution between the engine and the electric
motors at each sampling time.

4.2.1. Hybrid System Configuration andModeling. Power split
HEVs have the advantages of serial and parallel HEVs. The
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operation modes are more abundant and better fuel economy
can be obtained with power split HEVs [23]. Now power
split configuration with double planetary gear sets is also
becomingmore common such asTHS-III. So in this study, we
suppose that each vehicle is power split HEV and its hybrid
system is CHS system, characterized by double planetary gear
sets (PG1 and PG2) and two electric motors (MG1 andMG2);
both can work as a motor or generator [24]. Structure of CHS
is shown in Figure 7. Vehicle modeling is as follows:

(1) Engine model: in this study, from the view of energy
distribution, the transient response of the system is
neglected. As a result, the test modeling method is
used to describe the behavior of the engine. The
engine model can be established by a look-up table
model capable of mapping engine input and output
based on engine experimental data. The engine fuel
rate is a function of engine torque and speed, which is
described as

⋅𝑚𝑓 = 𝜓𝑓 (𝑇E, 𝜔E) , (20)

where
⋅𝑚𝑓 is the engine fuel rate, 𝑇E is the engine

torque, and 𝜔E is the engine speed.
(2) Electric motor model: for energy management, the

relationship between the motor demand torque and
the actual torque is mainly concerned. The motor
model is established by experimental data.
Then a look-up table model of motor efficiency and
motor torque and speed is established. The motor
efficiency and the relationship between output torque
and required torque are described as

𝜂𝑚 = 𝜓𝑚 (𝑇𝑚, 𝜔𝑚) , (21)

𝑇𝑚 = {{{
min (𝑇𝑚 req , 𝑇max dis) , 𝑇𝑚 req > 0
max (𝑇𝑚 req , 𝑇max char) , 𝑇𝑚 req < 0, (22)

where 𝜂𝑚 is the motor efficiency, T𝑚 is the output
torque of the motor, 𝜔𝑚 is the motor speed, and𝑇𝑚 req is the required torque of the motor. 𝑇𝑚𝑎𝑥 dis is
the maximum output torque of the motor at current
speed when battery is discharging, and 𝑇𝑚𝑎𝑥 char is
the maximum output torque of the motor at current
speed when battery is charging.

(3) Battery model: the charging and discharging process
of battery has complex nonlinear characteristics. The
characteristic parameters involved include battery
voltage, working current, internal resistance, SOC,
and temperature. The modeling methods of bat-
tery mainly include RC (resistive-capacity) model,
Rint (internal resistance) model, and neural network
model [25, 26]. Rint model is adopted in this paper.
SOC is a main state variable when designing HEV
optimal control strategy and can be calculated by

⋅

SOC= −𝑉oc − √𝑉2oc − 4𝑅in𝑇𝑚𝜔𝑚𝜂−sgn(𝑇𝑚)𝑚

2𝑄max𝑅in
, (23)

where 𝑉oc is the open-circuit voltage of the battery,𝑄max is the maximum charging capability, 𝑅in is the
battery resistance, T𝑚 is the motor torque, and 𝜔𝑚 is
the motor speed.

4.2.2. Energy Management Strategy. The control strategy in
the lower controller is divided into two parts: mode selection
and torque distribution. The mode selection module selects
the proper operation modes and the torque distribution
module distributes the optimal torque commands to the
engine and two electric motors [27].

The lower controller chooses the appropriate operation
modes based on the required torque, vehicle states, and
battery SOC. In this study, a rule based control strategy
is adopted. The control strategy determines the operation
modes through a series of rules as follows:

(1) MG2 supplies all driving torque (mode 1), when
vehicle speed is below a certain vehicle speed denoted
by veh thresh, the required torque does not exceed
the maximum torque limit of MG2, and SOC is above
the lower limit denoted by soc lo.

(2) When SOC drops below soc lo or the required torque
exceeds the maximum torque limit of MG2, the
engine cooperates with MG1 and MG2. Thus, the
HEV operates in the compound driving mode (mode
2).

(3) When the required torque is negative, SOC is below
the upper limit denoted by soc hi, and vehicle speed
is below 80km/h, the compound brakingmode (mode
4) is activated.
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Figure 8: Stateflow chart.

(4) If the required torque is negative, when SOC reaches
soc hi or vehicle speed is above 80km/h, the HEV
operates in mechanical braking mode (mode 5).

(5) When the vehicle is at standstill and SOC is below
0.58, the engine is allowed to charge the battery (mode
3).When SOC is above 0.58, the engine stops charging
(mode 6).

The flowchart shown in Figure 8 describes the implemen-
tation of the control strategy.

Through the analysis of the structure of power split
configuration, static equation relating the torques of the
engine and two electric motors can be obtained.

When the locking mechanism is locked, the engine does
not provide torque, and static equation relating the torques of
the two electric motors is given by

𝑇𝑀 = 𝑇out + 𝐾1𝑇G1 + 𝐾2 , (24)

where 𝑇G is torque of MG1, T𝑀 is torque of MG2, and𝑇out is the resistance torque acting on the dynamic coupling
mechanism. K1 and K2 are characteristic parameters of PG1
and PG2, respectively.

When the locking mechanism is disengaged, static equa-
tion relating the torques of the engine and the two electric
motors is given by

𝑇G = − 1
1 + 𝐾1𝑇E

𝑇M = 𝑇out1 + 𝐾2 −
𝐾1𝑇E(1 + 𝐾1) (1 + 𝐾2) ,

(25)

where 𝑇E is the engine torque.
In the torque distribution module, the optimal operating

line (OOL) control strategy is adoptedwhen in the compound
driving mode.TheOOL control strategy canmake the engine
run on the optimal operating line and ensure the high
efficiency of the engine. The optimal operating line of the
engine is connected by the intersection points of the engine
equivalent fuel consumption curve and the engine equivalent
power curve.

5. Simulation and Analysis

Vehicle model and control strategy are built in Simulink.
Some parameters of the vehicle are described in Table 2. The
maximum allowable velocity on this section of the road is
70km/h and the minimum allowable velocity is considered



www.manaraa.com

Mathematical Problems in Engineering 9

Table 2: Some parameters of the vehicle.

Parameters Value
Vehicle massMm 1398kg
Air resistance coefficient CD 0.3
Air density 𝜌a 1.23 m3/kg
Frontal area Am 1.746 m2

Rolling resistance coefficient(𝜇) 0.008
Radius of wheel 0.287 m
Ratio of the final drive 3.93
Characteristic parameter of PG1 K1 2.11
Characteristic parameter of PG2 K2 2.11
Engine maximum power 54kW
MG1 maximum power 15kW
MG2 maximum power 30kW

to be 20km/h in the proposed strategy. In addition, in order
to verify the effect of the proposed strategy, it is compared
with the strategy without speed optimization, where the
target velocity is obtained only on the premise of preventing
collision; that is, traffic light timing information is not used
to planning speed.

Trajectories of vehicles with the two strategies are shown
in Figure 9. The red solid lines represent red light windows,
and the interval between the red solid lines represents green
light window. As shown in Figure 9, with the two strategies,
the fifth to sixth vehicles are separated from preceding vehi-
cles at about 190 seconds, but they join in again before passing
through the last intersection. With the strategy without
speed optimization, the vehicles have to stopmore frequently
when passing through intersections, while with the proposed
strategy, only at one intersection, the vehicles can not avoid
stopping.The vehicles that are not separated always keep each
other at an appropriate safety distance without any collision
and separation, which verifies the validity of the proposed
strategy.

The velocity profiles of the vehicles with the two strategies
are shown in Figure 10. Under the control of the proposed
strategy, vehicles only stop at one intersection during simula-
tion time, which suggests that the vehicles have goodmobility
and the road has high traffic efficiency with the proposed
strategy. In addition, with the proposed strategy, the change
trends of velocities of 1-4 vehicles are different from those of
5-6 vehicles, which indicates the separation of vehicles. It is
in agreement with the representation of Figure 9. The change
time of velocities of the vehicles that are not separated is
basically consistent, which shows that good communications
among vehicles are given and the proposed strategy can
avoid collision effectively. With the strategy without speed
optimization, vehicles have to stop more frequently and the
implication of changes of velocities is also in agreement with
the representation of Figure 9.

The SOC curves of vehicles and responses of the engine
and electric motors for vehicle 2 with the two strategies are
shown in Figures 11 and 12, respectively. The SOC curves with
the proposed strategy show a smoother tendency than those
of the strategy without speed optimization, which indicates

that the proposed strategy is more advantageous to battery
than the strategy without speed optimization.

Since the ring gear of PG2 is fixed, the direction of MG2
speed is the same as the speed direction at the input side of
the final drive [28]. The speed of MG2 is also proportional
to the wheel speed. Consequently, when the torque of MG2
is negative, MG2 regenerates the braking energy. From the
engine torque responses in Figure 12(a), it can be observed
that the working time of engine with strategy without speed
optimization is longer than that with the proposed strategy.

The torque and speed of MG1 are given in Figures 12(c)
and 12(d), while Figures 12(e) and 12(g) describe the power
of MG1 and MG2. It is obvious that the rated power of MG1
and MG2 meets the driving requirements. With the strategy
without speed optimization, MG2 generates electricity in
most time regions, and the time is longer than that with
the proposed strategy which is in line with the phenomenon
that SOC curve rises more with strategy without speed
optimization.

In Table 3, comparisons between the fuel consumption
and battery SOC of the vehicles for the two strategies are
made. As can be seen fromTable 3, fuel economyof each vehi-
cle is improved when the proposed strategy is applied. The
comparison between the strategy without speed optimization
and the proposed strategy is shown in Table 4. It is observed
that when the proposed strategy is adopted, the average fuel
consumption is decreased by about 31.05%, which means
realizing economic assistant driving. It can be seen that the
proposed strategy results in reduction of number of stopping
instances, which shows the improvement in mobility and
traffic smoothness. Thus the rationality and superiority of the
proposed strategy are verified.

6. Conclusions

Thepaper proposes a novel speed optimization strategy based
on the PSO algorithm for the HEV queue in the ITS, where
V2V and V2I information exchange can be achieved. In this
study, the basic theory and technical support are provided
for the further improvement of fuel economy of HEVs.
The speed optimization controller is designed to improve
fuel economy, safety, comfort, and mobility of the vehicle
queue. It can avoid red light idling as far as possible and
collision by using the preceding vehicle’s information and
traffic information, including traffic signal timing phases and
speed limits. Vehicle model and energy management strategy
are also established to further optimize fuel economy. The
benefit of the proposed strategy is significant when compared
to the strategy without speed optimization. The following
conclusions can be drawn based on the simulations: (i) HEVs
can avoid stopping at red light as far as possible under the
control of the proposed strategy. (ii) The proposed strategy
is more advantageous to battery. (iii) Compared to the
strategy without speed optimization, the proposed strategy
can improve average fuel efficiency of HEVs by 31.05% and
improve the traffic smoothness.

From the simulation process, the proposed algorithm
is fast for computation and has the potential for real-
time vehicle control in real-world urban set-ups. Of course,
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Figure 10: Vehicle velocity profiles with the proposed strategy and the strategy without speed optimization.
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Figure 11: Change of SOC.

we know predictive control algorithm needs to solve the
optimization problem repeatedly and has a large amount of
computation online, so its application is limited. Therefore,
we will continue to optimize the algorithm in future research
to reduce the online computation of controller and accelerate
the control process without reducing the quality of control
evidently. For example, the control variable is expressed as
a combination of a set of primary functions, so that online
optimization variables can be transformed into coefficients
of a small number of primary functions. We will also study
the effect of the different prediction time horizon and variable
parameters will also be used to deal with the prediction time

horizon and control time horizon. Furthermore, with large
servers, powerful processors, advanced ITS, and other high-
performance hardware devices, real-time implementation
ability will be no problem.

In addition, the future research could investigate more
complicated situation, such as lane changing and overtaking
because vehicles usually change lanes or overtake inevitably
in real-world urban set-ups. In this case, it is necessary
to study vehicle transverse control. After lane changing or
overtaking, the vehicle queues will regroup and the proposed
strategy is still suitable for regrouped vehicle queues. Road
slope can also be taken into account in subsequent studies.
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Figure 12: Responses of the engine and electric motors for vehicle 2.
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Table 3: Fuel consumption of vehicles for different strategies.

Vehicle
number

Strategy without
speed

optimization

Proposed
strategy

Engine fuel
consumption(g) Final SOC

Equivalent
fuel

consumption(g)

Engine fuel
consumption(g) Final SOC

Equivalent
fuel

consumption(g)
1 168.4 0.580 168.38 119.3 0.551 119.29
2 170.4 0.580 170.38 122.3 0.557 122.29
3 170.2 0.585 170.18 123.6 0.562 123.59
4 172.6 0.583 172.58 111.5 0.546 111.50
5 176.4 0.584 176.38 120.0 0.553 119.99
6 175.0 0.586 174.98 115.5 0.546 115.50

Table 4: Comparison between the strategy without speed optimization and the proposed strategy.

Average
equivalent

fuel
consumption(g)

Total number of stopping instances of vehicles

Strategy without speed optimization 172.15 18
Proposed strategy 118.69 6

Through further improvement, the proposed strategy will
be more adaptive and feasible for the various complexities
of the real-world urban environment and can be used in
automatic driving vehicles or Advanced Driver Assistance
Systems (ADAS).
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